Energy and Variance Optimization of Many-Body Wave Functions
نویسندگان
چکیده
منابع مشابه
Monte Carlo energy and variance-minimization techniques for optimizing many-body wave functions
We investigate Monte Carlo energy and variance-minimization techniques for optimizing many-body wave functions. Several variants of the basic techniques are studied, including limiting the variations in the weighting factors that arise in correlated sampling estimations of the energy and its variance. We investigate the numerical stability of the techniques and identify two reasons why variance...
متن کاملAlleviation of the Fermion-sign problem by optimization of many-body wave functions.
We present a simple, robust, and highly efficient method for optimizing all parameters of many-body wave functions in quantum Monte Carlo calculations, applicable to continuum systems and lattice models. Based on a strong zero-variance principle, diagonalization of the Hamiltonian matrix in the space spanned by the wave function and its derivatives determines the optimal parameters. It systemat...
متن کاملUniversitet Analytic structure of many - body Coulombic wave functions
We investigate the analytic structure of solutions of non-relativistic Schrödinger equations describing Coulombic manyparticle systems. We prove the following: Let ψ(x) with x = (x1, . . . , xN ) ∈ R denote an N -electron wavefunction of such a system with one nucleus fixed at the origin. Then in a neighbourhood of a coalescence point, for which x1 = 0 and the other electron coordinates do not ...
متن کاملeconomic optimization and energy consumption in tray dryers
دراین پروژه به بررسی مدل سازی خشک کردن مواد غذایی با استفاده از هوای خشک در خشک کن آزمایشگاهی نوع سینی دار پرداخته شده است. برای آنالیز انتقال رطوبت در طی خشک شدن به طریق جابجایی، یک مدل لایه نازک برای انتقال رطوبت، مبتنی بر معادله نفوذ فیک در نظر گفته شده است که شامل انتقال همزمان جرم و انرژی بین فاز جامد و گاز می باشد. پروفایل دما و رطوبت برای سه نوع ماده غذایی شامل سیب زمینی، سیب و موز در طی...
15 صفحه اولOptimization of quantum Monte Carlo wave functions by energy minimization.
We study three wave function optimization methods based on energy minimization in a variational Monte Carlo framework: the Newton, linear, and perturbative methods. In the Newton method, the parameter variations are calculated from the energy gradient and Hessian, using a reduced variance statistical estimator for the latter. In the linear method, the parameter variations are found by diagonali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2005
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.94.150201